By Topic

Attention-based dynamic visual search using inner-scene similarity: algorithms and bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Avraham ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel ; M. Lindenbaum

A visual search is required when applying a recognition process on a scene containing multiple objects. In such cases, we would like to avoid an exhaustive sequential search. This work proposes a dynamic visual search framework based mainly on inner-scene similarity. Given a number of candidates (e.g., subimages), we hypothesize is that more visually similar candidates are more likely to have the same identity. We use this assumption for determining the order of attention. Both deterministic and stochastic approaches, relying on this hypothesis, are considered. Under the deterministic approach, we suggest a measure similar to Kolmogorov's epsilon-covering that quantifies the difficulty of a search task. We show that this measure bounds the performance of all search algorithms and suggest a simple algorithm that meets this bound. Under the stochastic approach, we model the identity of the candidates as a set of correlated random variables and derive a search procedure based on linear estimation. Several experiments are presented in which the statistical characteristics, search algorithm, and bound are evaluated and verified.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 2 )