By Topic

A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pi-Fuei Hsieh ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Deng-Shiang Wang ; Chia-Wei Hsu

A parametric linear feature extraction method is proposed for multiclass classification. The skeleton of the proposed method consists of two types of schemes that are complementary to each other with regard to the discriminant information used. The approximate pairwise accuracy criterion (aPAC) and the common-mean feature extraction (CMFE) are chosen to exploit the discriminant information about class mean and about class covariance, respectively. Choosing aPAC rather than the linear discriminant analysis (LDA) can also resolve the problem of overemphasized large distances introduced by LDA, while maintaining other decent properties of LDA. To alleviate the suboptimum problem caused by a direct cascading of the two different types of schemes, there should be a mechanism for sorting and merging features based on their effectiveness. Usage of a sample-based classification error estimation for evaluation of effectiveness of features usually costs a lot of computational time. Therefore, we develop a fast spanning-tree-based parametric classification accuracy estimator as an intermediary for the aPAC and CMFE combination. The entire framework is parametric-based. This avoids paying a costly price in computation, which normally happens to the sample-based approach. Our experiments have shown that the proposed method can achieve a satisfactory performance on real data as well as simulated data.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 2 )