By Topic

Kernel matched subspace detectors for hyperspectral target detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heesung Kwon ; Army Res. Lab., Adelphi, MD, USA ; Nasrabadi, N.M.

In this paper, we present a kernel realization of a matched subspace detector (MSD) that is based on a subspace mixture model defined in a high-dimensional feature space associated with a kernel function. The linear subspace mixture model for the MSD is first reformulated in a high-dimensional feature space and then the corresponding expression for the generalized likelihood ratio test (GLRT) is obtained for this model. The subspace mixture model in the feature space and its corresponding GLRT expression are equivalent to a nonlinear subspace mixture model with a corresponding nonlinear GLRT expression in the original input space. In order to address the intractability of the GLRT in the feature space, we kernelize the GLRT expression using the kernel eigenvector representations as well as the kernel trick where dot products in the feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so-called kernel matched subspace detector (KMSD), is applied to several hyperspectral images to detect targets of interest. KMSD showed superior detection performance over the conventional MSD when tested on several synthetic data and real hyperspectral imagery.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 2 )