By Topic

Parametric yield maximization using gate sizing based on efficient statistical power and delay gradient computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chopra, K. ; Dept. of Electr. Eng. & Comput. Sci.,, Michigan Univ., Ann Arbor, MI, USA ; Shah, S. ; Srivastava, A. ; Blaauw, D.
more authors

With the increased significance of leakage power and performance variability, the yield of a design is becoming constrained both by power and performance limits, thereby significantly complicating circuit optimization. In this paper, we propose a new optimization method for yield optimization under simultaneous leakage power and performance limits. The optimization approach uses a novel leakage power and performance analysis that is statistical in nature and considers the correlation between leakage power and performance to enable accurate computation of circuit yield under power and delay limits. We then propose a new heuristic approach to incrementally compute the gradient of yield with respect to gate sizes in the circuit with high efficiency and accuracy. We then show how this gradient information can be effectively used by a non-linear optimizer to perform yield optimization. We consider both inter-die and intra-die variations with correlated and random components. The proposed approach is implemented and tested and we demonstrate up to 40% yield improvement compared to a deterministically optimized circuit.

Published in:

Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International Conference on

Date of Conference:

6-10 Nov. 2005