By Topic

Feature-based surface design and machining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cavendish, J.C. ; General Motors Res. Lab., Warren, MI, USA ; Marin, S.P.

A feature-based method for designing and representing functional surfaces such as automobile inner panels that lets a user assemble and present complicated, multifeatured surfaces using known, generally simpler component surfaces and information about feature shape is reviewed. It is shown that, using this method, CAD users can generate numerically controlled (NC) tool paths and use them to automatically machine 3-D surface geometries with various cutting tools such as ball-nose or spherical-end cutters and toroidal or flat-end cutters. The method was tested on models involving simple explicit primary and secondary surfaces as well as more complicated B-spline parametric surfaces. Results indicate that the tool-center-generation algorithm is accurate, robust, and computationally efficient.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:12 ,  Issue: 5 )