By Topic

Application-specific network-on-chip architecture customization via long-range link insertion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogras, U.Y. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Marculescu, R.

Networks-on-chip (NoCs) represent a promising solution to complex on-chip communication problems. The NoC communication architectures considered so far are based on either completely regular or fully customized topologies. In this paper, we present a methodology to automatically synthesize an architecture where a few application-specific long-range links are inserted on top of a regular mesh network. This way, we can better exploit the benefits of both complete regularity and partial customization. Indeed, our experimental results show that inserting application-specific long-range links significantly increases the critical traffic workload at which the network state transits from a free to a congested regime. This, in turn, results in a significant reduction in the average packet latency and a major improvement in the network achievable throughput.

Published in:

Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International Conference on

Date of Conference:

6-10 Nov. 2005