By Topic

Digital RF processor (DRP™) for cellular phones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Staszewski, R.B. ; Wireless Analog Technol. Center, Texas Instruments Inc., Dallas, TX, USA ; Muhammad, K. ; Leipold, D.

RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and HF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digital domain for a wireless RF transceiver, so that it enjoys the benefits of digital approach, such as process node scaling and design automation. All-digital phase locked loop, all-digital control of phase and amplitude of a polar transmitter, and direct HF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. Software layers are defined to enable these architectures to develop an efficient software defined radio. VHDL hardware description language is universally used throughout this SoC. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio.

Published in:

Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International Conference on

Date of Conference:

6-10 Nov. 2005