By Topic

Apex-Map: A Global Data Access Benchmark to Analyze HPC Systems and Parallel Programming Paradigms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Strohmaier, E. ; Lawrence Berkeley National Laboratory ; Hongzhang Shan

The memory wall and global data movement have become the dominant performance bottleneck for many scientific applications. New characterizations of data access streams and related benchmarks to measure their performances are therefore needed to compare HPC systems, software, and programming paradigms effectively. In this paper, we introduce a novel global data access benchmark, Apex-Map. It is a parameterized synthetic performance probe and integrates concepts for temporal and spatial locality into its design. We measured Apex-Map performance for a whole range of temporal and spatial localities on several advanced processors and parallel computing platforms and use the generated performance surfaces forperformance comparisons and to study the characteristics of these different architectures. We demonstrate that the results of Apex-Map clearly reflect many specific characteristics of the used systems. We also show the utility of Apex-Map for analyzing the performance effects of three leading parallel programming models and demonstrate their relative merits.

Published in:

Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference

Date of Conference:

12-18 Nov. 2005