By Topic

Methods of combining multiple classifiers and their applications to handwriting recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Xu ; Center for Pattern Recognition & Machine Intelligence, Concordia Univ., Montreal, Que., Canada ; A. Krzyzak ; C. Y. Suen

Possible solutions to the problem of combining classifiers can be divided into three categories according to the levels of information available from the various classifiers. Four approaches based on different methodologies are proposed for solving this problem. One is suitable for combining individual classifiers such as Bayesian, k -nearest-neighbor, and various distance classifiers. The other three could be used for combining any kind of individual classifiers. On applying these methods to combine several classifiers for recognizing totally unconstrained handwritten numerals, the experimental results show that the performance of individual classifiers can be improved significantly. For example, on the US zipcode database, 98.9% recognition with 0.90% substitution and 0.2% rejection can be obtained, as well as high reliability with 95% recognition, 0% substitution, and 5% rejection

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:22 ,  Issue: 3 )