By Topic

Rate-one space-time block codes with full diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang Xian ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR, USA ; Huaping Liu

Orthogonal space-time block codes provide full diversity, and maximum-likelihood (ML) decoding for orthogonal codes can be realized on a symbol-by-symbol basis. It has been shown that rate-one complex orthogonal codes do not exist for systems with more than two transmit antennas. For a general system with N transmit and M receive antennas, it is very desirable to design rate-one complex codes with full diversity. In this letter, we provide a systematic method of designing rate-one codes (real or complex) for a general multiple-input multiple-output system. Full diversity of these codes is then achieved by constellation rotation. A generalized, reduced-complexity decoding method for rate-one codes is also provided.

Published in:

IEEE Transactions on Communications  (Volume:53 ,  Issue: 12 )