By Topic

Electrocardiographic signal compression using multiscale recurrent patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, we use the multidimensional multiscale parser (MMP) algorithm, a recently developed universal lossy compression method, to compress data from electrocardiogram (ECG) signals. The MMP is based on approximate multiscale pattern matching , encoding segments of an input signal using expanded and contracted versions of patterns stored in a dictionary. The dictionary is updated using concatenated and displaced versions of previously encoded segments, therefore MMP builds its own dictionary while the input data is being encoded. The MMP can be easily adapted to compress signals of any number of dimensions, and has been successfully applied to compress two-dimensional (2-D) image data. The quasi-periodic nature of ECG signals makes them suitable for compression using recurrent patterns, like MMP does. However, in order for MMP to be able to efficiently compress ECG signals, several adaptations had to be performed, such as the use of a continuity criterion among segments and the adoption of a prune-join strategy for segmentation. The rate-distortion performance achieved was very good. We show simulation results were MMP performs as well as some of the best encoders in the literature, although at the expense of a high computational complexity.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:52 ,  Issue: 12 )