Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

EEG-based drowsiness estimation for safety driving using independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chin-Teng Lin ; Dept. of Electr. & Control Eng./Dept. of Comput. Sci., Nat. Chiao-Tung Univ., Hsin-Chu, Taiwan ; Ruei-Cheng Wu ; Sheng-Fu Liang ; Wen-Hung Chao
more authors

Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers' cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major challenges in developing such a system include: 1) the lack of significant index for detecting drowsiness and 2) complicated and pervasive noise interferences in a realistic and dynamic driving environment. In this paper, we develop a drowsiness-estimation system based on electroencephalogram (EEG) by combining independent component analysis (ICA), power-spectrum analysis, correlation evaluations, and linear regression model to estimate a driver's cognitive state when he/she drives a car in a virtual reality (VR)-based dynamic simulator. The driving error is defined as deviations between the center of the vehicle and the center of the cruising lane in the lane-keeping driving task. Experimental results demonstrate the feasibility of quantitatively estimating drowsiness level using ICA-based multistream EEG spectra. The proposed ICA-based method applied to power spectrum of ICA components can successfully (1) remove most of EEG artifacts, (2) suggest an optimal montage to place EEG electrodes, and estimate the driver's drowsiness fluctuation indexed by the driving performance measure. Finally, we present a benchmark study in which the accuracy of ICA-component-based alertness estimates compares favorably to scalp-EEG based.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 12 )