By Topic

Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

The successful realization of a wireless body area network (WBAN) requires innovative solutions to meet the energy consumption budget of the autonomous sensor nodes. The radio interface is a major challenge, since its power consumption must be reduced below 100 μW (energy scavenging limit). The emerging ultra-wide-band (UWB) technology shows strong advantages in reaching this target. First, most of the complexity of an UWB system is in the receiver, which is a perfect scenario in the WBAN context. Second, the very little hardware complexity of a UWB transmitter offers the potential for low-cost and highly integrated solutions. Finally, in a pulse-based UWB scheme, the transmitter can be duty-cycled at the pulse rate, thereby reducing the baseline power consumption. We present a low-power UWB transmitter that can be fully integrated in standard CMOS technology. Measured performances of a fully integrated pulse generator are provided, showing the potential of UWB for low power and low cost implementations. Finally, using a WBAN channel model, we present a comparison between our UWB solution and state-of-the-art low-power narrow-band implementations. This paper shows that UWB performs better in the short range due to a reduced baseline power consumption.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 12 )