By Topic

An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Sideris ; Dept. of Mech. & Aerosp. Eng., Univ. of California, Irvine, CA, USA ; J. E. Bobrow

We develop a numerically efficient algorithm for computing controls for nonlinear systems that minimize a quadratic performance measure. We formulate the optimal control problem in discrete-time, but many continuous-time problems can be also solved after discretization. Our approach is similar to sequential quadratic programming for finite-dimensional optimization problems in that we solve the nonlinear optimal control problem using sequence of linear quadratic subproblems. Each subproblem is solved efficiently using the Riccati difference equation. We show that each iteration produces a descent direction for the performance measure, and that the sequence of controls converges to a solution that satisfies the well-known necessary conditions for the optimal control.

Published in:

IEEE Transactions on Automatic Control  (Volume:50 ,  Issue: 12 )