Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Synthesis of Pt/ZrO2 catalyst on Fecralloy substrates using composite plasma-polymerized films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dhar, R. ; Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Pedrow, P.D. ; Liddell, K.C. ; Quentin Ming
more authors

In a hydrogen-based energy system, fuel cells will utilize hydrogen to produce electricity while reformers produce hydrogen from infrastructure fuels, such as gasoline, diesel and natural gas. Reformers based on microchannel technology require a catalyst dispersed throughout a porous support, and the support must adhere firmly to the substrate. In this work, catalyst and support precursors were deposited via plasma enhanced chemical vapor deposition onto Fecralloy substrates, in alternate layers of plasma-polymerized platinum acetylacetonate and zirconium acetylacetonate. Non-equilibrium, inductively-coupled plasma was generated by applying radio frequency fields to a precursor vapor plume emanating from a heated sublimator crucible. After calcining the composite organic film to volatilize organic constituents, catalytically active platinum agglomerates remained supported by a matrix of zirconia. Plasma-processing took place directly in precursor vapor without added carrier gas. The intermediate organic composite film and the final synthesized platinum-loaded support adhering to the Fecralloy have been evaluated with profilometry, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-mass spectrometry. Cubic phase platinum and cubic phase zirconia have been detected on the Fecralloy. This material catalyzes conversion of carbon monoxide to carbon dioxide in a water gas shift (WGS) reactor in the temperature range 400°C-500°C.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 6 )