By Topic

Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woods, N.A. ; Binary Machines Inc., Schaumburg, IL, USA ; Galatsanos, N.P. ; Katsaggelos, A.K.

Using a stochastic framework, we propose two algorithms for the problem of obtaining a single high-resolution image from multiple noisy, blurred, and undersampled images. The first is based on a Bayesian formulation that is implemented via the expectation maximization algorithm. The second is based on a maximum a posteriori formulation. In both of our formulations, the registration, noise, and image statistics are treated as unknown parameters. These unknown parameters and the high-resolution image are estimated jointly based on the available observations. We present an efficient implementation of these algorithms in the frequency domain that allows their application to large images. Simulations are presented that test and compare the proposed algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )