Cart (Loading....) | Create Account
Close category search window
 

Context quantization by kernel Fisher discriminant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mantao Xu ; Dept. of Comput. Sci., Univ. of Joensuu, Finland ; Xiaolin Wu ; Franti, P.

Optimal context quantizers for minimum conditional entropy can be constructed by dynamic programming in the probability simplex space. The main difficulty, operationally, is the resulting complex quantizer mapping function in the context space, in which the conditional entropy coding is conducted. To overcome this difficulty, we propose new algorithms for designing context quantizers in the context space based on the multiclass Fisher discriminant and the kernel Fisher discriminant (KFD). In particular, the KFD can describe linearly nonseparable quantizer cells by projecting input context vectors onto a high-dimensional curve, in which these cells become better separable. The new algorithms outperform the previous linear Fisher discriminant method for context quantization. They approach the minimum empirical conditional entropy context quantizer designed in the probability simplex space, but with a practical implementation that employs a simple scalar quantizer mapping function rather than a large lookup table.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.