By Topic

Nonlinear image representation for efficient perceptual coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Malo, J. ; Dept. d''Opt., Univ. de Valencia, Spain ; Epifanio, I. ; Navarro, R. ; Simoncelli, E.P.

Image compression systems commonly operate by transforming the input signal into a new representation whose elements are independently quantized. The success of such a system depends on two properties of the representation. First, the coding rate is minimized only if the elements of the representation are statistically independent. Second, the perceived coding distortion is minimized only if the errors in a reconstructed image arising from quantization of the different elements of the representation are perceptually independent. We argue that linear transforms cannot achieve either of these goals and propose, instead, an adaptive nonlinear image representation in which each coefficient of a linear transform is divided by a weighted sum of coefficient amplitudes in a generalized neighborhood. We then show that the divisive operation greatly reduces both the statistical and the perceptual redundancy amongst representation elements. We develop an efficient method of inverting this transformation, and we demonstrate through simulations that the dual reduction in dependency can greatly improve the visual quality of compressed images.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )