By Topic

Design-level performance prediction of component-based applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Liu ; Nat. ICT Australia, NSW, Australia ; Gorton, I. ; Fekete, K.

Server-side component technologies such as Enterprise JavaBeans (EJBs), .NET, and CORBA are commonly used in enterprise applications that have requirements for high performance and scalability. When designing such applications, architects must select suitable component technology platform and application architecture to provide the required performance. This is challenging as no methods or tools exist to predict application performance without building a significant prototype version for subsequent benchmarking. In this paper, we present an approach to predict the performance of component-based server-side applications during the design phase of software development. The approach constructs a quantitative performance model for a proposed application. The model requires inputs from an application-independent performance profile of the underlying component technology platform, and a design description of the application. The results from the model allow the architect to make early decisions between alternative application architectures in terms of their performance and scalability. We demonstrate the method using an EJB application and validate predictions from the model by implementing two different application architectures and measuring their performance on two different implementations of the EJB platform.

Published in:

Software Engineering, IEEE Transactions on  (Volume:31 ,  Issue: 11 )