Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Evolving feature selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
H. Liu ; Arizona State Univ., AZ, USA ; E. R. Dougherty ; J. G. Dy ; K. Torkkola
more authors

Data preprocessing is an indispensable step in effective data analysis. It prepares data for data mining and machine learning, which aim to turn data into business intelligence or knowledge. Feature selection is a preprocessing technique commonly used on high-dimensional data. Feature selection studies how to select a subset or list of attributes or variables that are used to construct models describing data. Its purposes include reducing dimensionality, removing irrelevant and redundant features, reducing the amount of data needed for learning, improving algorithms' predictive accuracy, and increasing the constructed models' comprehensibility. This article considers feature-selection overfitting with small-sample classifier design; feature selection for unlabeled data; variable selection using ensemble methods; minimum redundancy-maximum relevance feature selection; and biological relevance in feature selection for microarray data.

Published in:

IEEE Intelligent Systems  (Volume:20 ,  Issue: 6 )