By Topic

A fully approach for key variables identification of EMG evaluation signal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanfeng Hou ; Dept. of Electr. & Comput. Eng., Louisville Univ., KY, USA ; J. M. Zurada ; W. Karwowski ; W. M. Marras

Identification of influence of input variables is very important for complex nonlinear systems with high dimensional input space. In this paper we propose a method using fuzzy average with fuzzy cluster distribution (FAFCD). To avoid the interference of different distributions of the sampling data, we deal with the distribution of fuzzy clusters in the sampling data, instead of the original data set. To discover the input-output relationship, we first use method of fuzzy rules and fuzzy c-means to partition the original sampling data set into fuzzy clusters. We produce a new data set with the same distribution of the fuzzy clusters. Then the fuzzy average method is applied to the new data set. By doing this, the interference of distribution of the original sampling data is removed. This method is straightforward and computationally easy. The performance is tested on both benchmark data and the electromyographic (EMG) signal Evaluation System.

Published in:

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.  (Volume:4 )

Date of Conference:

July 31 2005-Aug. 4 2005