By Topic

Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. J. Valdes ; Inst. for Inf. Technol., Nat. Res. Council, Ottawa, Ont., Canada ; A. J. Barton

A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High quality networks from the point of view of both discrimination and generalization capabilities are discovered. The NDA mappings generated by these networks, together with unsupervised representations of the data, lead to a deeper understanding of complex high dimensional data like leukemia and Alzheimer gene expression microarray experiments.

Published in:

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.  (Volume:4 )

Date of Conference:

July 31 2005-Aug. 4 2005