By Topic

Lossless high dynamic range image coding based on lifting scheme using nonlinear interpolative effect of discrete-time cellular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Aomori, H. ; Dept. of Electr. & Electron. Eng., Sophia Univ., Tokyo, Japan ; Kawakami, K. ; Otake, T. ; Takahashi, N.
more authors

The lifting scheme is a flexible method for the construction of linear and nonlinear wavelet transforms. In this paper, we propose a novel lossless high dynamic range (HDR) image coding method based on the lifting scheme using discrete-time cellular neural networks (DT-CNNs). In our proposed method, the image is interpolated by using the nonlinear interpolative dynamics of DT-CNN. Because the output function of DT-CNN works as a multi-level quantization function, our method adapts for the prediction of HDR image, and composes the integer lifting scheme for lossless coding. Moreover, our method makes good use of the nonlinear interpolative dynamics by A-template compared with conventional CNN image coding methods using only B-template. The experimental results show a better coding performance compared with the conventional lifting method using linear filters.

Published in:

Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on  (Volume:3 )

Date of Conference:

31 July-4 Aug. 2005