By Topic

Efficient parameter selection for support vector machines in classification and regression via model-based global optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frohlich, H. ; Center For Bioinformatics Tubingen, Germany ; Zell, A.

Support vector machines (SVMs) have become one of the most popular methods in machine learning during the last years. A special strength is the use of a kernel function to introduce nonlinearity and to deal with arbitrarily structured data. Usually the kernel function depends on certain parameters, which, together with other parameters of the SVM, have to be tuned to achieve good results. However, finding good parameters can become a real computational burden as the number of parameters and the size of the dataset increases. In this paper we propose an algorithm to deal with the model selection problem, which is based on the idea of learning an online Gaussian process model of the error surface in parameter space and sampling systematically at points for which the so called expected improvement is highest. Our experiments show that on this way we can find good parameters very efficiently.

Published in:

Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on  (Volume:3 )

Date of Conference:

31 July-4 Aug. 2005