Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An associative memory for the on-line recognition and prediction of temporal sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bose, J. ; Sch. of Comput. Sci., Manchester Univ., UK ; Furber, S.B. ; Shapiro, J.L.

This paper presents the design of an associative memory with feedback that is capable of on-line temporal sequence learning. A framework for on-line sequence learning has been proposed, and different sequence learning models have been analysed according to this framework. The network model is an associative memory with a separate store for the sequence context of a symbol. A sparse distributed memory is used to gain scalability. The context store combines the functionality of a neural layer with a shift register. The sensitivity of the machine to the sequence context is controllable, resulting in different characteristic behaviours. The model can store and predict on-line sequences of various types and length. Numerical simulations on the model have been carried out to determine its properties.

Published in:

Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on  (Volume:2 )

Date of Conference:

31 July-4 Aug. 2005