By Topic

A reconfigurable continuous time recurrent neural network for evolvable hardware applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gallagher, J.C. ; Dept of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; Boddhu, S.K. ; Vigraham, S.

Evolvable hardware is reconfigurable hardware plus an evolutionary algorithm. Continuous time recurrent neural networks (CTRNNs) have already been proposed for use as the reconfigurable hardware component. Until recently, however, nearly all CTRNN based EH was simulation based. This paper provides a design for a reconfigurable analog CTRNN computer that supports both extrinsic and intrinsic CTRNN evolvable hardware. The paper will fully characterize the design and demonstrate that configurations can be moved from simulation to hardware without difficulty. It will also discuss implications for an upcoming VLSI system that will combine the CTRNN circuitry with the learning engine on a single chip.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005