By Topic

Applying genetic programming to learn spatial differences between textures using a translation invariant representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lam, B.T. ; RMIT Univ., Melbourne, Vic., Australia ; Ciesielski, V.

This paper describes an approach to evolving texture feature extraction programs using tree based genetic programming. The programs are evolved from a learning set of 13 textures selected from the Brodatz database. In the evolutionary phase, texture images are first "binarised" to 256 grey levels. An encoding of the positions of the black pixels is used as the input to the evolved programs. A separate feature extraction program is evolved for each of the 256 grey levels. Fitness is measured by applying the evolved program to all of the images in the learning set, using one dimensional clustering on the outputs and then using the separation between the clusters as the fitness value. On two benchmark problems using the evolved programs for feature extraction and a nearest neighbour classifier, the evolved features gave test accuracies of 74.6% and 66.2% respectively for a 13 Brodatz and a 15 Vistex texture problem. This is better than a number of human derived methods on the same problems.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005