By Topic

Recombinative EMCMC algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Drugan, M.M. ; Dept. of Comput. Sci., Utrecht Univ., Netherlands ; Thierens, D.

Evolutionary Markov chain Monte Carlo (EMCMC) is a class of algorithms obtained by merging Markov chain Monte Carlo algorithms with evolutionary computation methods. EMCMC integrates techniques from the EC framework (population, recombination and selection) into the MCMC framework to increase the performance of the standard MCMC algorithms. In this paper, we show how to use recombination operators in EMCMC and how to combine them with other existing MCMC techniques (e.g. mutation and selection). We illustrate these principles by means of an example.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005