By Topic

Evolutionary strategies and genetic algorithms for dynamic parameter optimization of evolving fuzzy neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minku, F.L. ; Center of Informatics, Pernambuco Fed. Univ., Recife, Brazil ; Ludermir, T.B.

Evolving fuzzy neural networks are usually used to model evolving processes, which are developing and changing over time. This kind of network has some fixed parameters that usually depend on presented data. When data change over time, the best set of parameters also changes. This paper presents two approaches using evolutionary computation for the on-line optimization of these parameters. One of them utilizes genetic algorithms and the other one utilizes evolutionary strategies. The networks were used to Mackey-Glass chaotic time series prediction with changing dynamics. A comparative study is made with these approaches and some variations of them.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005