By Topic

Hybrid evolutionary algorithms for constraint satisfaction problems: memetic overkill?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Craenen, B.G.W. ; Napier Univ., Edinburgh, UK ; Eiben, A.E.

We study a selected group of hybrid EAs for solving CSPs, consisting of the best performing EAs from the literature. We investigate the contribution of the evolutionary component to their performance by comparing the hybrid EAs with their "de-evolutionarised" variants. The experiments show that "de-evolutionarising" can increase performance, in some cases doubling it. Considering that the problem domain and the algorithms are arbitrarily selected from the "memetic niche", it seems likely that the same effect occurs for other problems and algorithms. Therefore, our conclusion is that after designing and building a memetic algorithm, one should perform a verification by comparing this algorithm with its "de-evolutionarised" variant.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005