By Topic

Ant colony system for the beam angle optimization problem in radiotherapy planning: a preliminary study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yongjie Li ; Sch. of Lfe Sci. & Technol., UESTC, Chengdu, China ; Dezhong Yao ; Wufan Chen ; Jiancheng Zheng
more authors

Intensity-modulated radiotherapy (IMRT) is being increasingly used for treatment of malignant cancer. Beam angle optimization (BAO) is an important problem in IMRT. In this paper, an emerging population-based meta-heuristic algorithm named ant colony optimization (ACO) is introduced to solve the BAO problem. In the proposed algorithm, a multi-layered graph is designed to map the BAO problem to ACO, and a heuristic function based on the beam's-eye-view dosimetrics (BEVD) score is introduced. In order to verify the feasibility of the presented algorithm, a clinical prostate tumor case is employed, and the preliminary results demonstrate that ACO appears more effcient than genetic algorithm (GA) and can find the optimal beam angles within a clinically acceptable computation time.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:2 )

Date of Conference:

2-5 Sept. 2005