Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A new guided genetic algorithm for 2D hydrophobic-hydrophilic model to predict protein folding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hoque, M.T. ; Gippsland Sch. of Comput. & Inf. Technol., Monash Univ., Churchill, Vic. ; Chetty, M. ; Dooley, L.S.

This paper presents a novel guided genetic algorithm (GGA) for protein folding prediction (PFP) in 2D hydrophobic-hydrophilic (HP) by exploring the protein core formation concept. A proof of the shape for an optimal core is provided and a set of highly probable sub-conformations are defined which help to establish the guidelines to form the core boundary. A series of new operators including diagonal move and tilt move are defined to assist in implementing the guidelines. The underlying reasons for the failure in the folding prediction of relatively long sequences using Unger's genetic algorithm (GA) in 2D HP model are analysed and the new GGA is shown to overcome these limitations. The overall strategy incorporates a swing function that provides a mechanism to enable the GGA to test more potential solutions and also prevent it from developing a schema that may cause it to become trapped in local minima. While the guidelines do not force particular conformations, the result is a number of conformations for particular putative ground energy and superior prediction accuracy, endorsing the improved performance compared with other well established nondeterministic search approaches

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:1 )

Date of Conference:

5-5 Sept. 2005