Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Performance Comparisons between Greedy and Lagrange Algorithms in Adaptive MIMO MC-CDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Uthansakul, P. ; Sch. of Inf. Technol. & Electr. Eng., Queensland Univ., St. Lucia, Qld. ; Bialkowski, M.E.

This paper describes two algorithms for adaptive power and bit allocations in a multiple input multiple output multiple-carrier code division multiple access (MIMO MC-CDMA) system. The first is the greedy algorithm, which has already been presented in the literature. The other one, which is proposed by the authors, is based on the use of the Lagrange multiplier method. The performances of the two algorithms are compared via Monte Carlo simulations. At present stage, the simulations are restricted to a single user MIMO MC-CDMA system, which is equivalent to a MIMO OFDM system. It is assumed that the system operates in a frequency selective fading environment. The transmitter has a partial knowledge of the channel whose properties are measured at the receiver. The use of the two algorithms results in similar system performances. The advantage of the Lagrange algorithm is that is much faster than the greedy algorithm

Published in:

Communications, 2005 Asia-Pacific Conference on

Date of Conference:

5-5 Oct. 2005