By Topic

A mixed-form fast multipole algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Jun Jiang ; Univ. of Illinois, Urbana, IL, USA ; Weng Cho Chew

The fast multipole algorithm manifests in two very different forms at low frequencies and at mid frequencies. Each can operate in their respective regimes, but are not tenable in the other regimes. The paper reports on a way to factorize the Green's function for fast algorithm using a mixed form. The low-frequency fast multipole algorithm (LF-FMA) will be used at low frequencies or the long-wavelength regime, and the multilevel fast multipole algorithm (MLFMA) will be used for the mid frequencies or the shorter-wavelength regime. For object modeling where both long-wavelength and wave physics are important, we propose a mixed-form fast multipole algorithm (MF-FMA). This algorithm has no low frequency break down, and it can work seamlessly from static (where circuit physics is important) to dynamic (where wave physics is important).

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 12 )