By Topic

Electromagnetic scattering by an inhomogeneous plasma anisotropic sphere of multilayers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
You-Lin Geng ; Inst. of Antenna & Microwaves, Hangzhou Dianzi Univ., Zhejiang, China ; Xin-Bao Wu ; Le-Wei Li ; Bo-Ran Guan

Electromagnetic scattering by an inhomogeneous plasma anisotropic sphere is formulated and obtained, where the inhomogeneous plasma anisotropic sphere is divided into (s-1) homogeneous anisotropic spherical layers. The electromagnetic fields in the inner spherical multilayers and outer free space of the inhomogeneous plasma anisotropic spherical structure can be expanded in terms of the spherical vector wave functions in plasma anisotropic medium and in isotropic medium, respectively. By applying the continuous boundary conditions of electromagnetic fields on the spherical interfaces of the (s-1)-layered homogeneous anisotropic plasma medium, the unknown expansion coefficients of fields in the multilayered plasma spherical structure are obtained, and then the electromagnetic field distributions are calculated. Numerical results for the very general inhomogeneous plasma dielectric material sphere are given and the data in a special case are obtained using the present method and the method of moments accelerated with the conjugate-gradient fast-Fourier-transform approach and compared to each other to verify the correctness and applicability of the present analysis.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 12 )