By Topic

Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
RongLin Li ; Georgia Electron. Design Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Dejean, G. ; Laskar, J. ; Tentzeris, M.M.

It is demonstrated that the bandwidth of circular polarization (CP) can be significantly increased when one more parasitic loop is added inside the original loop. A single-loop antenna has only one minimum axial ratio (AR) point while the two-loop antenna can create two minimum AR points. An appropriate combination of the two minimum AR points results in a significant enhancement for the CP bandwidth. A comprehensive study of the new type of broad-band circularly polarized antennas is presented. Several loop configurations, including a circular loop, a rhombic loop, and a dual rhombic loop with a series feed and a parallel feed, are investigated. The AR (≤2 dB) bandwidth of the circular-loop antenna with a parasitic circular loop is found to be 20%, more than three times the AR bandwidth of a single loop. For the rhombic-loop antenna with a parasitic rhombic loop, an AR bandwidth (AR≤2dB) of more than 40% can be achieved by changing the rhombus vertex angle. The AR (≤2 dB) bandwidths of the series-fed and parallel-fed dual rhombic-loop antennas with a parasitic element are 30% and 50%, respectively. A broad-band balun is incorporated into the series-fed dual rhombic-loop antenna for impedance matching. The broad-band CP performance of the loop antennas is verified by experimental results.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 12 )