By Topic

COBOS: Cooperative backoff adaptive scheme for multirobot task allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Heng Fua ; NUS Graduate Sch. of Integrative Sci. & Eng., Nat. Univ. of Singapore, Singapore ; S. S. Ge

In this paper, the cooperative backoff adaptive scheme (COBOS) is proposed for task allocation amongst a team of heterogeneous robots. The COBOS operates in regions with limited communication ranges, and is robust against robot malfunctions and uncertain task specifications, with each task potentially requiring multiple robots. The portability of tasks across teams (or when team demography changes) is improved by specifying tasks using basis tasks in a matrix framework. The adaptive feature of COBOS further increases the flexibility of robot teams, allowing robots to adjust their actions based on past experience. In addition, we study the properties of COBOS: operation domain; communication requirements; computational complexity; and solution quality; and compare the scheme with other task-allocation mechanisms. Realistic simulations are carried out to verify the effectiveness of the proposed scheme.

Published in:

IEEE Transactions on Robotics  (Volume:21 ,  Issue: 6 )