By Topic

Iterative MILP methods for vehicle-control problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Earl, M.G. ; Adv. Inf. Technol., BAE Syst., Burlington, MA, USA ; D'Andrea, R.

Mixed-integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we present iterative MILP algorithms that address this issue. We consider trajectory-generation problems with obstacle-avoidance requirements and minimum-time trajectory-generation problems. These problems involve vehicles that are described by mixed logical dynamical equations, a form of hybrid system. The algorithms use fewer binary variables than standard MILP methods, and require less computational effort.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 6 )