Cart (Loading....) | Create Account
Close category search window
 

Narrow passage sampling for probabilistic roadmap planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zheng Sun ; Dept. of Comput. Sci., Hong Kong Baptist Univ., Kowloon, China ; Hsu, D. ; Tingting Jiang ; Kurniawati, H.
more authors

Probabilistic roadmap (PRM) planners have been successful in path planning of robots with many degrees of freedom, but sampling narrow passages in a robot's configuration space remains a challenge for PRM planners. This paper presents a hybrid sampling strategy in the PRM framework for finding paths through narrow passages. A key ingredient of the new strategy is the bridge test, which reduces sample density in many unimportant parts of a configuration space, resulting in increased sample density in narrow passages. The bridge test can be implemented efficiently in high-dimensional configuration spaces using only simple tests of local geometry. The strengths of the bridge test and uniform sampling complement each other naturally. The two sampling strategies are combined to construct the hybrid sampling strategy for our planner. We implemented the planner and tested it on rigid and articulated robots in 2-D and 3-D environments. Experiments show that the hybrid sampling strategy enables relatively small roadmaps to reliably capture the connectivity of configuration spaces with difficult narrow passages.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 6 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.