By Topic

A monolithically integrated 190-GHz SiGe push-push oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Wanner ; Tech. Univ. Munchen, Germany ; R. Lachner ; G. R. Olbrich

In this letter, we present a fully monolithically integrated G-band push-push oscillator. The device is fabricated in a production-near SiGe:C bipolar technology. The transistors used in this work show a maximum transit frequency fT= 200GHz and a maximum frequency of oscillation fmax= 275GHz. The passive circuitry is realized by integrated transmission-line components, metal-insulator-metal (MIM)-capacitors and TaN resistors. The frequency of the output signal can be tuned between 183.3GHz and 190.5GHz, the maximum output power of the oscillator is -4.5dBm and the measured minimum single sideband phase noise is -73dBc/Hz at 1-MHz offset frequency. This represents the highest output frequency for oscillators using heterojunction bipolar transistor technology and published up to now.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:15 ,  Issue: 12 )