By Topic

Power-steering control architecture for automatic driving

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. E. Naranjo ; Ind. Comput. Sci. Dept., Inst. de Autom.a Ind., Madrid, Spain ; C. Gonzalez ; R. Garcia ; T. de Pedro
more authors

The unmanned control of the steering wheel is, at present, one of the most important challenges facing researchers in autonomous vehicles within the field of intelligent transportation systems (ITSs). In this paper, we present a two-layer control architecture for automatically moving the steering wheel of a mass-produced vehicle. The first layer is designed to calculate the target position of the steering wheel at any time and is based on fuzzy logic. The second is a classic control layer that moves the steering bar by means of an actuator to achieve the position targeted by the first layer. Real-time kinematic differential global positioning system (RTK-DGPS) equipment is the main sensor input for positioning. It is accurate to about 1 cm and can finely locate the vehicle trajectory. The developed systems are installed on a Citroën Berlingo van, which is used as a testbed vehicle. Once this control architecture has been implemented, installed, and tuned, the resulting steering maneuvering is very similar to human driving, and the trajectory errors from the reference route are reduced to a minimum. The experimental results show that the combination of GPS and artificial-intelligence-based techniques behaves outstandingly. We can also draw other important conclusions regarding the design of a control system derived from human driving experience, providing an alternative mathematical formalism for computation, human reasoning, and integration of qualitative and quantitative information.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:6 ,  Issue: 4 )