Cart (Loading....) | Create Account
Close category search window
 

Random projection-based multiplicative data perturbation for privacy preserving distributed data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kun Liu ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA ; Kargupta, H. ; Ryan, J.

This paper explores the possibility of using multiplicative random projection matrices for privacy preserving distributed data mining. It specifically considers the problem of computing statistical aggregates like the inner product matrix, correlation coefficient matrix, and Euclidean distance matrix from distributed privacy sensitive data possibly owned by multiple parties. This class of problems is directly related to many other data-mining problems such as clustering, principal component analysis, and classification. This paper makes primary contributions on two different grounds. First, it explores independent component analysis as a possible tool for breaching privacy in deterministic multiplicative perturbation-based models such as random orthogonal transformation and random rotation. Then, it proposes an approximate random projection-based technique to improve the level of privacy protection while still preserving certain statistical characteristics of the data. The paper presents extensive theoretical analysis and experimental results. Experiments demonstrate that the proposed technique is effective and can be successfully used for different types of privacy-preserving data mining applications.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.