By Topic

Range nearest-neighbor query

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haibo Hu ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Lee, D.L.

A range nearest-neighbor (RNN) query retrieves the nearest neighbor (NN) for every point in a range. It is a natural generalization of point and continuous nearest-neighbor queries and has many applications. In this paper, we consider the ranges as (hyper)rectangles and propose efficient in-memory processing and secondary memory pruning techniques for RNN queries in both 2D and high-dimensional spaces. These techniques are generalized for kRNN queries, which return the k nearest neighbors for every point in the range. In addition, we devise an auxiliary solution-based index EXO-tree to speed up any type of NN query. EXO-tree is orthogonal to any existing NN processing algorithm and, thus, can be transparently integrated. An extensive empirical study was conducted to evaluate the CPU and I/O performance of these techniques, and the study showed that they are efficient and robust under various data sets, query ranges, numbers of nearest neighbors, dimensions, and cache sizes.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 1 )