By Topic

Effectively utilizing global cluster memory for large data-intensive parallel programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Oleszkiewicz ; Smiths Aerosp., Grand Rapids, MI, USA ; L. Xiao ; Yunhao Liu

Large scientific parallel applications demand large amounts of memory space. Current parallel computing platforms schedule jobs without fully knowing their memory requirements. This leads to uneven memory allocation in which some nodes are overloaded. This, in turn, leads to disk paging, which is extremely expensive in the context of scientific parallel computing. To solve this problem, we propose a new peer-to-peer solution called parallel network RAM. This approach avoids the use of disk, better utilizes available RAM resources, and will allow larger problems to be solved while reducing the computational, communication, and synchronization overhead typically involved in parallel applications. We proposed several different parallel network RAM designs and evaluated the performance of each under different conditions. We discovered that different designs are appropriate in different situations.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:17 ,  Issue: 1 )