By Topic

Performance analysis of predictive scalable resource allocation for integrated wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seok-Yee Tang ; Dept. of Electr. & Comput. Eng., Puerto Rico Univ., PR, USA ; Thilakawardana, S. ; Tafazolli, R. ; Yi Qian

This paper presents a framework of using predictive regression schemes in single-slot and multiple-slot scalable resource allocation for integrated wireless networks. For predictive scalable resource allocation techniques, the number of channels required in a service is determined in correspondence to the increase or decrease in real-time traffic intensity as well as the traffic load history. Based on the measurement of real-time traffic intensity and the recorded load history database, the traffic intensity at the next sampled time can be forecasted by the regression prediction schemes. The predicted channels for the next sampled time is assigned to the service periodically. In this study, we analyze and compare the performance of the various predictive scalable resource allocation schemes in a sudden changing traffic conditions. The voice service blocking probability, data service session delay, and radio resource utilization are assessed.

Published in:

Wireless Networks, Communications and Mobile Computing, 2005 International Conference on  (Volume:1 )

Date of Conference:

13-16 June 2005