By Topic

Magnetizable intravascular stents for sequestration of systemically circulating magnetic nano- and microspheres

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haitao Chen ; Dept. of Neurology, Chicago Univ., IL, USA ; Kaminski, M.D. ; Ebner, A.D. ; Ritter, J.A.
more authors

A 2-D theoretical model was established and used to evaluate the sequestration of blood borne magnetic nano- and microspheres by a magnetizable intravascular stent system. Furthermore, an in vitro flow model system examined the efficiency of a prototype magnetizable intravascular stent to sequestrate the nano- and microspheres from arterial and/or venous blood flow. Comparisons of experimental and corresponding modeling data verified theoretical predictions. The results suggest that the magnetizable intravascular stents can be developed as an effective magnetic drug-targeting tool with potential medical applications.

Published in:

Microtechnology in Medicine and Biology, 2005. 3rd IEEE/EMBS Special Topic Conference on

Date of Conference:

12-15 May 2005