By Topic

UTB SOI SRAM cell stability under the influence of intrinsic parameter fluctuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Samsudin ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; B. Cheng ; A. R. Brown ; S. Roy
more authors

Intrinsic parameter fluctuations steadily increases with CMOS technology scaling. Around the 90nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Ultra thin body (UTB) SOI MOSFETs are expected to replace conventional MOSFETs for integrated memory applications due to superior electrostatic integrity and better resistant to some of the sources of intrinsic parameter fluctuations. To fully realise the performance benefits of UTB SOI based SRAM cells a statistical circuit simulation methodology which can fully capture intrinsic parameter fluctuation information into the compact model is developed. The impact on 6T SRAM static noise margin characteristics of discrete random dopants in the source/drain regions and body-thickness variations has been investigated for well scaled devices with physical channel length in the range of 10nm to 5nm. A comparison with the behaviour of a 6T SRAM based on a conventional 35nm MOSFET is also presented.

Published in:

Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005.

Date of Conference:

12-16 Sept. 2005