By Topic

Optimal testing resource allocation, and sensitivity analysis in software development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chin-Yu Huang ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Lyu, M.R.

We consider two kinds of software testing-resource allocation problems. The first problem is to minimize the number of remaining faults given a fixed amount of testing-effort, and a reliability objective. The second problem is to minimize the amount of testing-effort given the number of remaining faults, and a reliability objective. We have proposed several strategies for module testing to help software project managers solve these problems, and make the best decisions. We provide several systematic solutions based on a nonhomogeneous Poisson process model, allowing systematic allocation of a specified amount of testing-resource expenditures for each software module under some constraints. We describe several numerical examples on the optimal testing-resource allocation problems to show applications & impacts of the proposed strategies during module testing. Experimental results indicate the advantages of the approaches we proposed in guiding software engineers & project managers toward best testing resource allocation in practice. Finally, an extensive sensitivity analysis is presented to investigate the effects of various principal parameters on the optimization problem of testing-resource allocation. The results can help us know which parameters have the most significant influence, and the changes of optimal testing-effort expenditures affected by the variations of fault detection rate & expected initial faults.

Published in:

Reliability, IEEE Transactions on  (Volume:54 ,  Issue: 4 )