By Topic

On the use of model checking for the verification of a dynamic signature monitoring approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nicolescu, B. ; Ecole Polytechnique de Montreal, Que., Canada ; Gorse, N. ; Savaria, Y. ; Aboulhamid, E.M.
more authors

Consequences of transient faults represent a significant problem for today's electronic circuits and systems. As the probability of such errors increases, incorporation of error detection and correction mechanisms is mandatory. It is well known that traditional techniques that validate system's reliability do not cover the whole spectrum of fault scenarios, because fault models are linked to target architectures. Therefore, validating the completeness of robust fault tolerance techniques is a major issue when assessing reliability improvements these techniques can produce. In this paper, we propose an original approach to evaluate the system reliability with respect to Single Event Upset (SEU) errors. It is based on model-checking principles. In addition, a signature analysis technique is evaluated. This technique was previously validated using a simulation-based fault injection approach. Simulation results showed that no error escapes detection. However, simulation based fault injection cannot guarantee that all fault consequences have been investigated. This limitation motivates us to explore a formal verification approach that targets a complete validation. Model checking has a fundamental advantage over classic fault-injection techniques: it can cover all possible SEU fault scenarios from a predefined class. Results reported in this paper demonstrate the efficiency of this validation approach over usual simulation-based techniques.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:52 ,  Issue: 5 )