By Topic

Reduction of noise amplification in SPECT using smaller detector bin size

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
DoSik Hwang ; Dept. of Bioeng., Univ. of Utah, Salt Lake City, UT, USA ; G. L. Zeng

In SPECT iterative reconstruction methods, such as the ML-EM (Maximum Likelihood Expectation Maximization) algorithm, the noise propagation from the projection measurements into the reconstructed image has been a difficult problem to control as the algorithm iterates. In this paper, we show that the noise amplification at high number of iterations can be reduced by using a detector whose bin size is smaller than the image pixel size without applying any regularization methods or changing any other factors. We compare different detector system characteristics using SVD (Singular Value Decomposition) analysis, show the noise properties in each detector system through both simulation studies and physical phantom studies, and finally compare how the noise amplification affects the image quality in different detector systems. The ML-EM algorithm when used in conjunction with a smaller detector bin size has better convergent properties and reduces noise amplification at high number of iterations.

Published in:

IEEE Transactions on Nuclear Science  (Volume:52 ,  Issue: 5 )